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Recently Jammalamadaka and Mangalam [2003. Non-parametric estimation for middle cen-
soreddata. J.Nonparametric Statist. 15, 253--265] introducedageneral censoring schemecalled
the "middle-censoring'' scheme innon-parametric setup. In thispaperweconsider thismiddle-
censoring scheme when the lifetime distribution of the items is exponentially distributed and
the censoring mechanism is independent and non-informative. In this set up, we derive the
maximum likelihood estimator and study its consistency and asymptotic normality properties.
We also derive the Bayes estimate of the exponential parameter under a gamma prior. Since a
theoretical construction of the credible interval becomes quite difficult, we propose and imple-
ment Gibbs sampling technique to construct the credible intervals. Monte Carlo simulations
are performed to evaluate the small sample behavior of the techniques proposed. A real data
set is analyzed to illustrate the practical application of the proposed methods.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In thispaperweanalyze lifetimedatawhen theyare "middle censored''.Middle censoringoccurs if adatapoint isnotobservable
when it falls inside a random interval. The middle-censoring scheme can be described as follows. Suppose n identical items are
put on test and the lifetimes of these items are T1, . . . , Tn. For the ith item, there is a random censoring interval (Li, Ri), which
follows some unknown bivariate distribution. For the ith item, Ti is observable only if Ti /∈ [Li, Ri], otherwise it is not observable.
Suppose �i = I(Ti /∈ [Li, Ri]), where I(·) denotes the indicator function. Therefore, when �i = 1, the observation is not censored
and we observe the actual value Ti. In this case we do not observe (Li, Ri). On the other hand, when �i = 0, we observe only the
censoring interval [Li, Ri]. For the ith item, we observe the following:

(Yi,�i) =
{

(Ti,1) if Ti /∈ [Li, Ri],
([Li, Ri],0) otherwise.

(1)

Thus, the data obtained here are not the same as that obtained in the interval censoring case. Based on the observations, the
problem is to estimate the lifetime distribution functions of Ti's and develop necessary inferential procedures.

The middle-censoring scheme was first introduced by Jammalamadaka andMangalam (2003) under a non-parametric set up.
It is an important variation and also a generalization of the existing left censoring, right censoring and double censoring schemes.
All the above three censoring schemes can be obtained as special cases of this middle-censoring scheme by suitably choosing
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censoring intervals, which can be infinite. At first glance, middle censoring, where a random middle part is missing, appears as
complementary to the idea of double censoring inwhich themiddle part iswhat is actually observed. However, a careful reflection
and analysis shows them to be quite different ideas; see Jammalamadaka and Mangalam (2003) for details.

Before getting into technical details, we mention a few situations where middle censoring occurs. In any lifetime study if
the subject is temporarily withdrawn from the study (e.g. an individual leaves town for a temporary period and returns, if still
alive), we obtain this middle-censoring situation. Middle censoring also occurs when the measuring equipment breaks down for
a temporary period or if the clinic, where the observations are being taken, is closed for a period, due to an external emergency
such as the outbreak of war or a strike. In such cases the event of interest (or failure) could take place during the period when an
observation is not possible or is not being made.

In Jammalamadaka and Mangalam (2003), T1, . . . , Tn are taken to be independent and identically distributed (i.i.d.) random
variableswith someunknowndistribution function F(·). Also, (L1, R1), . . . , (Ln, Rn) are i.i.d.with someunknownbivariate distribu-
tion function G(·, ·) and they are independent of Ti. Based on this, they obtain the non-parametric maximum likelihood estimator
(MLE) of the unknown distribution function F(·) and show that it is a self-consistent estimator under the condition that one of the
ends is non-random (see the review article of Tarpey and Flury (1996) for a nice account of the self-consistent estimators).

In this paper we consider a parametric formulation of the problem. It is assumed that T1, . . . , Tn are i.i.d. exponential random
variables with mean 1/�0 i.e. with the probability density function (PDF) given below:

f(x;�0) =
{
�0e−�0x, x >0,

0 otherwise.
(2)

Moreover, (L1, Z1), . . . , (Ln, Zn) are i.i.d. where Li and Zi = Ri − Li are independent exponential random variables and they are
independent of Ti. It is also assumed that Li and Zi havemeans 1/� and 1/�, respectively, and they do not depend on �0. It implies
that the censoringmechanism is independent of the lifetime of the population of interest and has no information on this lifetime.

Such assumptions as the independence are very standard in the lifetime data analysis. See for example Kaplan and Meier
(1958), Turnbull (1974), Babu et al. (1992), Jammalamadaka and Mangalam (2003), Jammalamadaka and Iyer (2004) and the
references cited there, who make this assumption for a variety of censoring schemes. There are several reasons for that and
we mention a couple. First of all, in most of the real life situations it is unlikely that the censoring mechanism depends on the
lifetime of the population and that it provides any information on the population distribution function. In all the examples we
gave earlier, middle censoring occurs because of an external cause that does not have anything to do with the "lifetimes''. There
are a few papers in the literature (see e.g. Robertson and Uppuluri, 1984) which discuss non-parametric estimation of the lifetime
distribution in the case when the lifetimes and the censoring intervals are dependent. Recently Hongyu et al. (2005) consider
the problem of right censoring in a semi-parametric model in which the dependence between the censoring mechanism and the
lifetimes is modeled via a gamma fraility copula. In the parametric set up that we consider, an analytically tractable model for
dependence between the lifetimes and the censoring intervals has to be formulated before the estimation questions are tackled.
The authors hope to address this question in a future paper.

Based on the above assumptions we obtain different estimators of �0 and study their properties. We provide the MLE of �0. It
is observed that the MLE cannot be obtained in a closed form. We propose a simple iterative procedure for finding the MLE and
the sufficient condition for the convergence of the iterative method is also provided. We also suggest the EM algorithm which
can be used to compute the MLE and provide sufficient condition for its convergence. It is shown that the MLE of �0 is consistent
and asymptotically normal. As might be expected, the asymptotic variance of MLE of �0 depends on the censoring parameters �
and �. Thus for constructing asymptotic confidence intervals for �0 we use the empirical Fisher information matrix.

We also compute the Bayes estimate of �0 under the assumption of Gamma prior distribution on �0. No prior distributions
on the censoring parameters are assumed. Moreover, the censoring is assumed to be non-informative. After noting that the exact
Bayes estimate is difficult to compute in this case, we propose to use the Gibbs sampling procedure to compute the Bayes estimate
as well as the highest posterior density (HPD) credible interval of �0.

The rest of the paper is organized as follows. In Section 2, we provide theMLE and the proposed EM algorithm followed by the
theoretical results in Section 3. The Bayesian formulation and the simulation results are presented in Sections 4 and5, respectively.
An illustrative data analysis and results are given in Section 6 and conclusions in Section 7.

2. Maximum likelihood estimator

After re-ordering the data as necessary, we can assume without loss of generality, that the first n1 and the rest n2 are the
uncensored and censored observations, respectively. Therefore, we have the following observed data:

{(T1,1), . . . , (Tn1 ,1), (Ln1+1, Rn1+1), . . . , (Ln1+n2 , Rn1+n2 )}, (3)

where n1 +n2 =n. Thus, Ti /∈ (Li, Ri) for the first n1 observations, while Ti ∈ (Li, Ri) for the last n2 observations. Based on the above
information the likelihood function of the observed data is given by

l(�) = c�n1e−�
∑n1

i=1 ti

n1+n2∏
i=n1+1

(e−�li − e−�ri ), (4)
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where c is the normalizing constant which depends on � and �. Since we are not interested in estimating � and �, we are not
making it explicit. Based on (4), the log-likelihood becomes

ln l(�) = L(�) = ln c + n1 ln� − �
n1∑
i=1

ti +
n1+n2∑
i=n1+1

ln(e−�li − e−�ri ). (5)

Taking the derivative of L(�) and setting it equal to 0, we obtain

�L

��
= n1

�
−

n1∑
i=1

ti +
n1+n2∑
i=n1+1

(ri − li)

e�(ri−li) − 1
−

n1+n2∑
i=n1+1

li = 0. (6)

Therefore, �̂, the MLE of �, can be obtained by solving Eq. (6). Since (6) does not admit an explicit solution, we provide an iterative
procedure to solve for the MLE. Note that (6) can be written as

h(�) = �, (7)

where

h(�) = 1∑n1+n2
i=n1+1 li +∑n1

i=1 ti

⎡
⎣n1 + �

n1+n2∑
i=n1+1

zie
−�zi

1 − e−�zi

⎤
⎦ . (8)

Therefore, a simple iterative procedure can be used to solve (7). For example, we can start with an initial guess �(1), then obtain
�(2) = h(�(1)) and so on. The iterative procedure may be stopped if |�(i) − �(i+1)| < �, where � is some preassigned small positive
number. For an initial choice of �, we can use �(1) = n1/

∑n1
i=1ti.

Alternatively, the EM algorithm also can be used to find the MLE of �. First let us obtain E(T |L < T < R), where L and R are fixed
quantities and T follows an exponential distribution with mean 1/�. Now

E(T |L < T < R) = e−�L(L + 1/�) − e−�R(R + 1/�)

e−�L − e−�R
. (9)

Note that (9) can be used to compute the EM algorithm. The pseudo likelihood function will take the following form:

l(�) = �n1+n2e
−�(

∑n1
i=1 Ti+

∑n1+n2
i=n1+1 T

(s)
i

)
, (10)

where

T(s)
i

= e−�Li (Li + 1/�) − e−�Ri (Ri + 1/�)

e−�Li − e−�Ri
. (11)

Therefore, we use (9) for the "E'' step and then the "M'' step becomes quite trivial. The details are given below.

EM algorithm.

• Step 1: Suppose �(j) is the jth iterate of �̂.

• Step 2: Compute T(s)
i(j)

by using (11) replacing � by �(j).

• Step 3: �(j+1) = n1+n2∑n1
i=1 Ti+

∑n1+n2
i=n1+1 T

(s)
i(j)

.

3. Theoretical results

Theorem 1. The iterative process provided in (7) will converge if

n1+n2∑
i=n1+1

ri �2
n1∑
i=1

ti + 3
n1+n2∑
i=n1+1

li. (12)

Proof of Theorem 1. Consider

|h′(�)| = 1∑n1
i=1 ti +∑n1+n2

i=n1+1 li

∣∣∣∣∣∣
n1+n2∑
i=n1+1

zie
−�zi (1 − e−�zi − �zi)

(1 − e−�zi )2

∣∣∣∣∣∣ .
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Note that

|e−x||(1 − e−x − x)|
|1 − e−x|2 � 1

2
for all x�0,

therefore,

|h′(�)|� 1
2

∑n1+n2
i=n1+1 zi∑n1

i=1 ti +∑n1+n2
i=n1+1 li

.

We know that the iterative process converges if |h′(�)| <1, therefore, the result follows. �

Now we need the following lemma to prove the consistency of the MLE.

Lemma 1.

1
n

L(�) −→ g(�) a.s.,

where

g(�) = c′ + p(�0) ln� − �
{

1
�0

− (1 − p(�0))(� + � + 2�0)

(� + �0)(� + �0)

}
− �

(1 − p(�0))

(� + �0)

− ��
� + �0

⎡
⎣ ∞∑

i=1

1
i(� + i�)

−
∞∑
i=1

1
i(� + i� + �0)

⎤
⎦ ,

p(�) = �� + �� + �2

(� + �)(� + �)
and c′ = 1

n
ln c. (13)

Proof of Lemma 1. Note that

1
n

L(�) = c′ + n1
n

ln� − �
n

n1∑
i=1

Ti − �
n

n1+n2∑
i=n1+1

Li + 1
n

n1+n2∑
i=n1+1

ln(1 − e−�Zi ).

The density function of T, conditional on the event that T /∈ (L, R) can be written as

fT |T /∈(L,R)(t) = 1
p(�0)

{
�0e

−�0t

(
1 − �e−�t

� − �
(1 − e−(�−�)t )

)}
if � �= � (14)

and

fT |T /∈(L,R)(t) = 1
p(�0)

{�0e−�0t (1 − �te−�t )} if � = �. (15)

Note that

p(�) = P�(T /∈ (L, R))

is as defined in (13). Now using (14) and (15)

E(T |T /∈ (L, R)) = 1
p(�0)

[
1
�0

− �0
(� + �0)2

]
if � = �,

= 1
p(�0)

[
�0

(� + �0)2
+ 1

�0
− �0

(� + �0)2
− ��0

� − �

(
1

(� + �0)2
− 1

(� + �0)2

)]
if � �= �.

Using the fact that the density function of L conditional on the event T ∈ (L, R) is

fL|T∈(L,R)(x) = 1
1 − p(�0)

× ��0
(� + �0)

e−(�+�0)x for x >0,

we have

E(L|T ∈ (L, R)) = 1
1 − p(�0)

× ��0
(� + �0)(� + �0)2

.
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Similarly, since the density function of Z = R − L conditioned on T ∈ (L, R) is

fZ|T∈(L,R)(z) = 1
1 − p(�0)

× ��e−�z

(� + �0)
(1 − e−�0z) for z >0,

therefore,

E(ln(1 − e−�0z)) = − 1
1 − p(�0)

× ��
(� + �0)

⎡
⎣ ∞∑

i=1

1
i(� + i�)

−
∞∑
i=1

1
i(� + i� + �0)

⎤
⎦ .

Now the result follows using n1/n → p(�0) a.s., and the strong law of large numbers. �

Lemma 2. g(�) is a unimodal function, with a unique maximum.

Proof of Lemma 2. It follows from the fact that g′(0) = ∞, g′(∞) <0 and g′′(�) <0. �

Lemma 3. The MLE of �0, say �̂, will converge to �∗, where �∗ is the unique solution of the non-linear equation

g′(�) = p(�0)

�
− 1

�0
+ (1 − p(�0))(� + � + 2�0)

(� + �0)(� + �0)
− 1 − p(�0)

(� + �0)

− ��
(� + �0)

⎡
⎣ ∞∑

i=1

1

(� + �0 + i�)2
−

∞∑
i=1

1

(� + i�)2

⎤
⎦= 0, (16)

where p(�) is as defined in (13).

Proof of Lemma 3. In this particular proof we denote �̂ by �̂n.
Case 1: �̂n is bounded for all n. Suppose �̂n does not converge to �∗. Therefore, there exists a subsequence {nk} of {n} and �̃ �= �∗,

such that �̂nk
→ �̃. Since �̂nk

is the MLE,

1
nk

L(�̂nk
)� 1

nk
L(�∗).

Taking limits on both sides of (3) we get

g(�̃)�g(�∗),

which leads to a contradiction because �∗ is the unique maximum of g(�).
Case 2: �̂n is not bounded. In this case there exists a subsequence {nk} of {n} such that �̂nk

→ ∞. Note that

1
nk

L(�̂nk
)� 1

nk
L(�∗),

and as �̂nk
→ ∞, (1/nk)L(�̂nk

) → −∞. Since (1/nk)L(�∗) converges to a fixed number, it leads to a contradiction. �

Now since �0 is a solution of (16), we have:

Theorem 2. The MLE of � is a consistent estimator of �0.

Now we provide the asymptotic distribution of the MLE.

Theorem 3. The MLE has the following asymptotic distribution:

√
n(�̂ − �0)

d→N

(
0,

�2

c2

)
,

where

�2 =
[
E

{(
T − 1

�0

)2∣∣∣∣∣ T /∈ (L, R)

}
−
({

E

(
T − 1

�0

)∣∣∣∣ T /∈ (L, R)

}2)]

+ [E(L2|T ∈ (L, R)) − (E(L|T ∈ (L, R)))2]

+
⎡
⎣E

⎧⎨
⎩
(

Ze−�0Z

1 − e−�0Z

)2∣∣∣∣∣∣ T ∈ (L, R)

⎫⎬
⎭−

[
E

{(
Ze−�0Z

1 − e−�0Z

)∣∣∣∣∣ T ∈ (L, R)

}]2⎤⎦
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and

c = p(�0)

�20
+ (1 − p(�0))

{
E

(
Z2e−�0Z

(1 − e−�0Z)2

)∣∣∣∣∣ T ∈ (L, R)

}
.

To prove Theorem 3, we need the following lemma.

Lemma 4. Suppose Ui's are a sequence of i.i.d. random variables with E(U1) = 0, V(U1) = 1 and {N(n)} follows Binomial (n, p), i.e. the
probability mass function of N(n) is

P(N(n) = i) =
(

n

i

)
pi(1 − p)n−i, i = 0, . . . , n,

where 0< p <1. Then as n → ∞,

1√
N(n)

N(n)∑
i=1

Ui
d→N(0,1).

Proof of Lemma 4. Suppose

YN(n) = 1√
N(n)

N(n)∑
i=1

Ui

and the characteristic function of YN(n) is �N(n)(t). Then,

�N(n)(t) = E(eitYN(n) ) = E(eit(1/
√

N(n))
∑N(n)

i=1 Ui )

=
n∑

k=0

E(eit(1/
√

k)
∑k

i=1 Ui |N(n) = k)

(
n

k

)
pk(1 − p)n−k .

Now if �U(.) denotes the characteristic function of U1, then for fixed t,

|�N(n)(t) − e−t2/2|�
n∑

k=0

|E(eit(1/
√

k)
∑k

i=1 Ui |N(n) = k) − e−t2/2|
(

n

k

)
pk(1 − p)n−k

=
n∑

k=0

∣∣∣∣∣
(
�U

(
t√
k

))k

− e−t2/2

∣∣∣∣∣
(

n

k

)
pk(1 − p)n−k .

Since by Central Limit Theorem

lim
k→∞

�U

(
t√
k

)k

= e−t2/2,

therefore, for a given �>0, choose N1(t) large enough so that for k�N1(t)∣∣∣∣∣�U

(
t√
k

)k

− e−t2/2

∣∣∣∣∣ ��.

Moreover, for fixed N1(t), choose n large enough so that

N1(t)∑
i=0

(
n

i

)
pi(1 − p)n−i ��.

Therefore,

|�N(n)(t) − e−t2/2|�
N1(t)∑
k=0

∣∣∣∣∣
(
�U

(
t√
k

))k

− e−t2/2

∣∣∣∣∣
(

n

k

)
pk(1 − p)n−k

+
n∑

k=N1(t)+1

∣∣∣∣∣
(
�U

(
t√
k

))k

− e−t2/2

∣∣∣∣∣
(

n

k

)
pk(1 − p)n−k

�2� + � = 3�.

Since � is arbitrary, the result follows from the fact that e−t2/2 is the characteristic function of N(0,1) random variable. �



3556 S.K. Iyer et al. / Journal of Statistical Planning and Inference 138 (2008) 3550 -- 3560

Proof of Theorem 3. Note that

L(�) = n1 ln� − �
n1∑
i=1

Ti − �
n1+n2∑
i=n1+1

Li +
n1+n2∑
i=n1+1

ln(1 − e−�Zi ),

L′(�) = n1
�

−
n1∑
i=1

Ti −
n1+n2∑
i=n1+1

Li +
n1+n2∑
i=n1+1

Zie
−�Zi

(1 − e−�Zi )

and

L′′(�) = −n1

�2
−

n1+n2∑
i=n1+1

Z2
i
e−�Zi

(1 − e−�Zi )2
.

Using mean value theorem,

L′(�̂) − L′(�0) = (�̂ − �0)L′′(�̄),

where �̄ is a point between �̂ and �0. Therefore,

√
n(�̂ − �0) = − (1/

√
n)L′(�0)(

(1/n)L′′(�̄)
) .

Now the proof will be complete once we show that

1√
n

L′(�0) −→ N(0,�2) in distribution (17)

and

1
n

L′′(�̄) −→ c a.s. (18)

Now note that (17) follows from Lemma 4. The proof of (18) follows from the fact that �̄ converges to �0 a.s. and from the strong
law of large numbers. �

4. Bayesian analysis

In this section we consider a Bayesian formulation of the problem of estimating the parameter �. We will assume that
the parameter � has a gamma prior distribution with the shape parameter a and scale parameter b, denoted by Gamma(a, b).
The density function of the prior density of � for a, b >0, is

	(�) = 	(�|a, b) = ba


(a)
�a−1e−b�. (19)

No prior distribution on the censoring parameters is assumed. Based on the above assumption, the likelihood function of the
observed data is

l(data|�) = c�n1e−�
∑n1

i=1ti

n1+n2∏
i=n1+1

(1 − e−�zi )e
−�
∑n1+n2

i=n1+1li . (20)

By a slight abuse of the notation, writing zi = zn1+i and li = ln1+i we can rewrite (20) as

l(data|�) = c�n1e−�
∑n1

i=1ti

n2∏
i=1

(1 − e−�zi )e−�
∑n2

i=1li . (21)

Based on (19), the joint density of the data and � is

l(data|�)	(�). (22)

Based on (22), we obtain the posterior density of � given the data as

	(�|data) = l(data|�)	(�)∫∞
0 l(data|�)	(�)d�

. (23)
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We can write the numerator of the right-hand side of (23) as

l(data|�)	(�) = c�a+n1−1e−�(b+∑n1
i=1ti+

∑n2
i=1li)

n2∏
i=1

(1 − e−�zi ). (24)

Note that

n2∏
i=1

(1 − e−�zi ) =
∑
Pj

(−1)
|Pj |e−�(z.Pj), (25)

where Pj is a vector length n2 and each entry of Pj is either a 0 or a 1. |Pj| denotes the sum of elements of Pj and z = (z1, . . . , zn2 ).
The summation on the right-hand side of (25) is over 2n2 elements and (z.Pj) denotes the usual dot product between the two
vectors of equal lengths. Using (25), the numerator of (23) can be written as

l(data|�)	(�) = c
∑
Pj

(−1)
|Pj | �a+n1−1e−�(b+∑n1

i=1 ti+
∑n2

i=1 li+(z.Pj)). (26)

So we obtain∫ ∞
0

l(data|�)	(�)d� = c
∑
Pj

(−1)
|Pj | 
(a + n1)

(b +∑n1
i=1ti +∑n2

i=1li + (z.Pj))
a+n1

. (27)

Therefore, the posterior density of � given the data for �>0 is

	(�|data) =
∑

Pj
(−1)

|Pj |�a+n1−1e−�(b+∑n1
i=1 ti+

∑n2
i=1 li+(z.Pj))

∑
Pj

(−1)
|Pj |
(a + N1)/(b +∑n1

i=1 ti +∑n2
i=1 li + (z.Pj))

a+n1
. (28)

Therefore, the Bayes estimate of � under squared error loss function is

E(�|data) =
∑

Pj
(−1)

|Pj |/(b +∑n1
i=1 ti +∑n2

i=1 li + (z.Pj))
a+n1+1

∑
Pj

(−1)
|Pj |/(b +∑n1

i=1 ti +∑n2
i=1 li + (z.Pj))

a+n1
. (29)

When n2 is small, the evaluation of E(�|data) is not difficult, but for large n2 it is difficult to compute numerically. We propose a
simple Gibbs sampling technique to compute E(�|data) and for constructing the corresponding credible interval. Note that when
n2 = 0, then,

	(�|data) ∼ Gamma

⎛
⎝a + n1, b +

n1∑
i=1

ti

⎞
⎠ , (30)

as should be expected. Moreover, the conditional density of T, given T ∈ (L, R), is

fT |T∈(L,R)(x|�) = �e−�x

e−�L − e−�R
if L < x < R. (31)

Using (30) and (31) we propose the following Gibbs sampling scheme to generate � from its posterior distribution.

Gibbs sampling scheme.

• Step 1: Generate �1,1 from Gamma(a + n1, b +∑n1
i=1ti).

• Step 2: Generate t(n1+i) for i = 1, . . . , n2 from fT |T∈(ln1+i,rn1+i)
(.|�1,1).

• Step 3: Generate �2,1 from Gamma(a + n1 + n2, b +∑n1
i=1ti +∑n1+n2

i=n1+1t(i)).

• Step 4: Go back to Step 2, and replace �1,1 by �2,1 and repeat Steps 2 and 3 for N times.

From the generated N �2,j , the Bayes estimate of �0, under squared error loss function can be computed as

1
N − M

N∑
j=M+1

�2,j , (32)
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Table 1
The average estimates and the corresponding mean squared errors (within brackets) are reported for the different estimators

n Methods (0.5,0.25) (0.5,0.5) (0.5,0.75) (1.25,0.25) (1.25,0.5) (1.25,0.75)

10 MLE 1.1114 1.1167 1.1295 1.1130 1.1161 1.1237
(0.1506) (0.1618) (0.1836) (0.1547) (0.1609) (0.1738)

Bayes 1.1043 1.1189 1.1157 1.1220 1.1075 1.1389
(0.1492) (0.1629) (0.1796) (0.1799) (0.1589) (0.2022)

20 MLE 1.0422 1.0446 1.0492 1.0416 1.0436 1.0440
(0.0631) (0.0654) (0.0707) (0.0633) (0.0639) (0.0656)

Bayes 1.0479 1.0567 1.0471 1.0744 1.0603 1.0485
(0.0694) (0.0689) (0.0739) (0.0704) (0.0693) (0.0613)

30 MLE 1.0352 1.0366 1.0373 1.0350 1.0361 1.0363
(0.0398) (0.0407) (0.0419) (0.0393) (0.0400) (0.0405)

Bayes 1.0361 1.0349 1.0297 1.0370 1.0335 1.0430
(0.0409) (0.0408) (0.0415) (0.0395) (0.0420) (0.0398)

40 MLE 1.0232 1.0248 1.0254 1.0226 1.0228 1.0239
(0.0277) (0.0283) (0.0287) (0.0276) (0.0277) (0.0286)

Bayes 1.0308 1.0182 1.0313 1.0286 1.0327 1.0282
(0.0321) (0.0265) (0.0314) (0.0299) (0.0303) (0.0301)

50 MLE 1.0178 1.0189 1.0195 1.0176 1.0182 1.0182
(0.0229) (0.0235) (0.0242) (0.0276) (0.0229) (0.0233)

Bayes 1.0133 1.0221 1.0136 1.0191 1.0131 1.0224
(0.0198) (0.0225) (0.0211) (0.0226) 0.0209 (0.0227)

Here true value of �0 = 1.

whereM is the burn-in sample. Similarly, using the method of Chen and Shao (1999), the HPD credible interval of �0 also can be
constructed.

5. Numerical results

In this sectionwemainly compare how the differentmethodswork for small sample sizes and for different censoring schemes.
Simulations were carried out using the random number generator RAN2 of Press et al. (1992), and based on 1000 replications
each. The program written in FORTRAN-77 can be obtained on request from the authors.

We considered different sample sizes namely n = 10,20,30,40,50 and different censoring schemes. For the censoring
scheme we considered the following combinations of (1/�,1/�) = (0.5,0.25), (0.5,0.5), (0.5,0.75), (1.25,0.25), (1.25,0.50) and
(1.25,0.75). In all cases without loss of generality, we have kept �0 = 1. Note that the censoring percentages vary between 10%
and 30%. From the given sample we compute MLE of �0 using the EM algorithm and also using the iterative method proposed in
Section 2. It is observed that in both cases they converge to the same value. We also compute the 95% confidence intervals based
on the asymptotic distribution of the MLE and replacing the expected Fisher information by the empirical Fisher information.
Meeker and Escobar (1998) reported that the confidence interval based on the asymptotic distribution of ln �̂ is usually superior
to one of �̂.We computed the confidence interval based on the asymptotic distribution of ln �̂. For comparison purposes, the Bayes
estimates under squared error loss function and the corresponding 95% Monte Carlo HPD credible interval as suggested by Chen
and Shao (1999) are also reported in Tables 1 and 2. All the Bayes estimates are computed using the prior a = 0 and b = 0. Note
that the above prior is non-informative and non-proper prior. Although, the prior is non-proper but the corresponding posterior
has a proper density function. As suggested by Congdon (2001), we tried the prior a = 0.0001 and b = 0.0001, which is a proper
prior but which is almost non-informative, the results are not significantly different and they are not reported here.

From Table 1 one can see that as the sample size increases, the average biases and mean squared errors decrease for both the
MLE and Bayes estimator for all the censoring schemes. It verifies the consistency properties of both the estimators. For fixed
sample size and for fixed �, as 1/� increases (severe censoring), the biases and the mean squared errors both increase for the
maximum likelihood estimates. In case of Bayes estimates although the mean squared errors decrease, the same cannot be said
about the biases. Apart from this, they behave quite similarly both in terms of biases and mean squared errors.

From Table 2 it is clear that as the sample size increases, the average lengths of the confidence/credible intervals decrease for
all the three suggested methods. Similarly, for fixed sample size and for fixed � as 1/� increases, the average lengths increase as
expected. For all the three cases, the coverage percentages are quite close to the nominal level (95%) even when the sample size
is as small as 10. The performances of all the methods are quite similar in nature. The Bayes credible intervals are slightly larger
than the asymptotic confidence intervals, for moderate sample sizes (namely 20, 30 and 40). The average confidence intervals
based on the transformed MLEs (MEE) are slightly longer compared to the other two.

6. Data analysis

For illustrative purposes, we present a real data analysis results using our proposedmethod. The data set is taken from Lawless
(1982, p. 491) and consists of failure times for 36 appliances subject to an automatic life tests. Although the original data have also
the cause of failure with each failure time, but herewe are interested in the overall failure distribution andwe do not consider the
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Table 2
The average lengths of the confidence/credible intervals and the corresponding coverage percentages (within brackets) are reported

n Methods (0.5,0.25) (0.5,0.5) (0.5,0.75) (1.25,0.25) (1.25,0.5) (1.25,0.75)

10 MLE 1.3815 1.4028 1.4440 1.3820 1.3953 1.4194
(0.97) (0.97) (0.97) (0.96) (0.96) (0.96)

Bayes 1.3531 1.3874 1.4043 1.3706 1.3642 1.4160
(0.96) (0.95) (0.95) (0.94) (0.95) (0.94)

MEE 1.4722 1.4969 1.5447 1.4726 1.4879 1.5158
(0.95) (0.95) (0.94) (0.95) (0.95) (0.95)

20 MLE 0.9154 0.9253 0.9418 0.9143 0.9210 0.9289
(0.94) (0.95) (0.94) (0.95) (0.95) (0.94)

Bayes 0.9348 0.9459 0.9480 0.9612 0.9480 0.9402
(0.94) (0.94) (0.94) (0.95) (0.94) (0.96)

MEE 0.9452 0.9559 0.9738 0.9439 0.9512 0.9598
(0.95) (0.95) (0.94) (0.95) (0.94) (0.95)

30 MLE 0.7423 0.7489 0.7584 0.7416 0.7461 0.7519
(0.95) (0.95) (0.94) (0.95) (0.96) (0.95)

Bayes 0.7473 0.7554 0.7646 0.7486 0.7488 0.7644
(0.95) (0.95) (0.95) (0.96) (0.95) (0.95)

MEE 0.7583 0.7653 0.7754 0.7576 0.7624 0.7685
(0.96) (0.95) (0.95) (0.96) (0.96) 0.95

40 MLE 0.6354 0.6411 0.6491 0.6346 0.6379 0.6436
(0.96) (0.96) (0.97) (0.96) (0.96) (0.96)

Bayes 0.6499 0.6433 0.6536 0.6437 0.6534 0.6550
(0.95) (0.96) (0.95) (0.96) (0.96) (0.96)

MEE 0.6456 0.6517 0.6600 0.6449 0.6483 0.6542
(0.96) (0.96) (0.95) (0.96) (0.96) 0.95

50 MLE 0.5652 0.5701 0.5772 0.5648 0.5679 0.5722
(0.95) (0.95) (0.95) (0.96) (0.95) (0.96)

Bayes 0.5642 0.5699 0.5699 0.5631 0.5665 0.5738
(0.95) (0.95) (0.95) (0.95) (0.95) (0.95)

MEE 0.5725 0.5776 0.5850 0.5721 0.5753 0.5798
(0.94) (0.94) (0.95) (0.94) (0.95) (0.95)

Here true value of �0 = 1.

cause of failure in this case. This data set was analyzed using exponential and Weibull models by Kundu and Basu (2000) and it
was observed that the exponential model can be used instead of Weibull model. For the complete data set it is observed that the
maximum likelihood estimate of �0 is 0.00036. The Kolmogorov--Smirnov distance between the empirical distribution function
and the fitted exponential distribution function is 0.1944 and the corresponding p value is 0.1317. Therefore, exponential model
cannot be rejected.

Now we created an artificial data by middle censoring, whose left end was an exponential random variable with mean 500
and the width was exponential with mean 1000. The data after rearranging are presented below:

Data set: 11, 35, 49, 170, 958, 1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451, 2471, 2551, 2565, 2568, 2694, 2761,
2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329, 6367, 6976, 7846, 13403, (118.66, 1224.04), (377.76, 2011.51), (351.65, 720.48),
(125.96, 4226.08).

The summary statistics of the data are as follows: n = 36, n1 = 32, n2 = 4,
∑n1

i=1ti = 95125,
∑n2

i=n1+1ri = 8182.11,
∑n2

i=n1+1li =
974.03. Therefore, the iterative process starts with the initial guess �(1) =32/95125=0.000336. Since ri, ti and li satisfy condition
(12) of Theorem1, therefore, theproposed iterativeprocesswill converge. The log-likelihood surfacewithout the additive constant
is provided in Fig. 1. It clearly shows that the log-likelihood surface is a unimodal function, and therefore the EM algorithm
should not have any problem of convergence. The iterative process (7) stops after three iterations and the solution is 0.000364.
The 95% confidence intervals based on the asymptotic distribution of �̂ and ln �̂ are (0.00024,0.00048) and (0.00026,0.00051),
respectively. The Bayes estimate (the posterior mean) under the non-informative and non-proper prior becomes 0.000362 and
the corresponding 95%HPD credible interval is (0.00025, 0.00049). The histogramof the generated posterior sample and the fitted
gamma distribution are presented in Fig. 2. In the same figure we have also plotted the fitted posterior density function assuming
n2 = 0. It shows the posterior information of the censored observations.

7. Conclusions

In this paper we have considered inference for the exponential distribution when the data are middle censored. Both the
classical and Bayesian frameworks are developed. Although this paper focuses on exponential lifetime distributions, similar
inferential procedures can be developed for other lifetime distributions such as the Weibull, gamma, log-normal distributions,
etc. Moreover, in this paper it is assumed that the censoring mechanism is independent and non-informative of the lifetime
distribution of thepopulation. Although, itwill be difficult, but itmight be interesting to consider the casewhen these assumptions
are not valid. We believe, more work is needed along these directions.
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Fig. 1. Log-likelihood surface of the given data set.
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Fig. 2. Histogram of the generated 1000 posterior sample and the fitted posterior density functions.
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